Abstract

We propose a mesh-based surface tracking method for fluid animation that both preserves fine surface details and robustly adjusts the topology of the surface in the presence of arbitrarily thin features like sheets and strands. We replace traditional re-sampling methods with a convex hull method for connecting surface features during topological changes. This technique permits arbitrarily thin fluid features with minimal re-sampling errors by reusing points from the original surface. We further reduce re-sampling artifacts with a subdivision-based mesh-stitching algorithm, and we use a higher order interpolating subdivision scheme to determine the location of any newly-created vertices. The resulting algorithm efficiently produces detailed fluid surfaces with arbitrarily thin features while maintaining a consistent topology with the underlying fluid simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.