Abstract

Sparse & noisy monitoring data leads to numerous challenges in prognostic and health management (PHM). Big data volume but poor quality with scarce healthy states information limits the performance of training machine learning (ML) and physics-based failure modeling. To address these challenges, this thesis aims to develop a new hybrid PHM framework with the ability to autonomously discover and exploit incomplete implicit physics knowledge in sparse & noisy monitoring data, providing a solution for deep physics knowledge-ML fusion by physics-informed machine learning algorithms. In addition, the developed hybrid framework also applies the self-supervised learning paradigm to significantly improve the learning performance under uncertain, sparse, and noisy data with lower requirements for specialist area knowledge. The performance of the developed algorithms will be investigated on the sparse and noise data generated by simulation data sets, public benchmark data sets, and the PHM platform to demonstrate its applicability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.