Abstract

The emerging methodology of Physics Informed Neural Networks (PINNs) promises to combine available data and physical knowledge to achieve high accuracy and fast evaluation. Dynamic thermal modelling of power transformers is an application specifically set to benefit from these characteristics. Data collected during typical operation is not representative of extreme loading scenarios and the number of thermal sensors is limited. The detailed geometry is often not known by the asset owner which creates high uncertainty for physics-based simulation models. In this study, the transformer is modeled by the one-dimensional heat diffusion equation. PINN is constructed with a loss function including both data-based and physics-based terms. A time-dependent source term from a time series of measurement is also part of the PINN. The result is compared with a finite volume solution demonstrating good agreement. The PINN approach will be useful for further development in thermal modelling for power transformers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call