Abstract

In this paper, we present a novel physics-informed neural network modeling approach for corrosion-fatigue. The hybrid approach is designed to merge physics- informed and data-driven layers within deep neural networks. The result is a cumulative damage model where the physics-informed layers are used to model the relatively well understood physics (crack growth through Paris law) and the data-driven layers account for the hard to model effects (bias in damage accumulation due to corrosion). A numerical experiment is used to present the main features of the proposed physics-informed recurrent neural network for damage accumulation. The test problem consists of predicting corrosion-fatigue of an Al 2024-T3 alloy used on panels of aircraft wing. Besides cyclic loading, the panels are also subjected to saline corrosion. The physics-informed neural network is trained using full observation of inputs (far-field loads, stress ratio and a corrosivity index – defined per airport) and very limited observation of outputs (crack length at inspection for only a small portion of the fleet). Results show that the physics-informed neural network is able to learn the correction in the original fatigue model due to corrosion and predictions are accurate enough for ranking damage in different airplanes in the fleet (which can be used to prioritizing inspection).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.