Abstract
AbstractIt is known that physics‐informed learning become a new learning philosophy that has been applied in many scientific domains. However, this approach often struggles to achieve optimal performance in addressing the issue of multiphysics coupling. Here, for the first time, we extend this approach to modeling chemical reactor systems. We design a new decoupling–coupling training framework, which consists of decoupling pre‐training and multiphysics coupling training steps. With decoupling pre‐training, the complex physical domain is decomposed into subdomains of fluid flow, heat transfer, and mass transfer combined with reaction kinetics. Each subdomain is represented by a specialized neural network that can provide a coarse but reasonable distribution of network parameters for initializing the sub‐networks for the subsequent multiphysics coupling training. The capabilities of this approach, in comparison with the traditional CFD simulation, are demonstrated through an example of a plate reactor system with a heating cylinder.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.