Abstract

This paper proposes an improved version of physics-informed neural networks (PINNs), the physics-informed kernel function neural networks (PIKFNNs), to solve various linear and some specific nonlinear partial differential equations (PDEs). It can also be considered as a novel radial basis function neural network (RBFNN). In the proposed PIKFNNs, it employs one-hidden-layer shallow neural network with the physics-informed kernel functions (PIKFs) as the customized activation functions. The PIKFs fully or partially contain PDE information, which can be chosen as fundamental solutions, green's functions, T-complete functions, harmonic functions, radial Trefftz functions, probability density functions and even the solutions of some linear simplified PDEs and so on. The main difference between the PINNs and the proposed PIKFNNs is that the PINNs add PDE constraints to the loss function, and the proposed PIKFNNs embed PDE information into the activation functions of the neural network. The feasibility and accuracy of the proposed PIKFNNs are validated by some benchmark examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.