Abstract
Iyer Markoulakis Helmholtz Hamiltonian metrics have been gauged to Coulombic Hilbert metrics, representing Gilbertian and Amperian natures of electromagnetic fields from mechanics of vortex rotational fields acting with gradient fields, typically in zero-point microblackhole general fields, extending to vacuum gravitational fields gauge. This ansatz general gaging helps to properly isolate field effects with physical analyses – mechanical, electric, magnetic components within the analytical processes. Vacuum gravitational fields and the flavor Higgs-Boson matter inertial gravitational fields have been thus quantified extending to stringmetrics constructs matrix showing charge asymmetry gauge metrics. Physical Analysis with applications to particle physics, Quantum ASTROPHYSICS, as well as grand unification physics have been advanced. Particle physics gauge matrix pointing to Dirac seas of electrons, monopoles with positrons, electron-positron annihilation leading to energy production, and the relativistic energy generating matter provided literature correlations. Quantum astrophysics extending gauge metrix analyzes of superluminal profile of signals velocity generating electron-positron chain like “curdling” action validates formalism with physics literature of electron-photon observed oscillatory fields configurations. Mechanism of creation of neutrino antineutrino pair orthogonal to electron positron “curdling” planes, that may lead to formation of protonic hydrogen of stars or orthogonally muon particles. These proposals will help to explain receding or fast expanding universe with the dark matter in terms of flavor metrics versus gauge associating metrics fields. Vacuum and gravitational monopoles, that are representation of compressed mass out of vortex Helmholtz decomposition fields have been interpolated to energy generation via electron positron monopole particles at cosmos extent of infinity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.