Abstract

Deep learning (DL) has driven innovation in the field of computational imaging. One of its bottlenecks is unavailable or insufficient training data. This article reviews an emerging paradigm, imaging physics-based data synthesis (IPADS), that can provide huge training data in biomedical magnetic resonance (MR) without or with few real data. Following the physical law of MR, IPADS generates signals from differential equations or analytical solution models, making learning more scalable and explainable and better protecting privacy. Key components of IPADS learning, including signal generation models, basic DL network structures, enhanced data generation, and learning methods, are discussed. Great IPADS potential has been demonstrated by representative applications in fast imaging, ultrafast signal reconstruction, and accurate parameter quantification. Finally, open questions and future work are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.