Abstract

Ultrasonic flow meters are crucial measuring instruments in natural gas transportation pipeline scenarios. The collected flow velocity data, along with the operational conditions data, are vital for the analysis of the metering performance of ultrasonic flow meters and analysis of the flow process. In practical applications, high requirements are placed on the modeling accuracy of ultrasonic flow meters. In response, this paper proposes an ultrasonic flow meter modeling method based on a combination of data learning and industrial physics knowledge. This paper builds ultrasonic flow meter flow velocity prediction models under different working conditions, combining pipeline flow field velocity distribution knowledge for data preprocessing and loss function design. By making full use of the characteristics of the physics and data learning, the prediction results are close to the real acoustic path flow velocity distribution; thus, the model has high accuracy and interpretability. Experiments are conducted to prove that the prediction error of the proposed method can be controlled within 1%, which can meet the needs of ultrasonic flow meter modeling and subsequent performance analysis in actual production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.