Abstract

In ITER, as in any tokamak, the first wall and divertor plasma-facing components (PFC) must provide adequate protection of in-vessel structures, sufficient heat exhaust capability and be compatible with the requirements of plasma purity. These functions take on new significance in ITER, which will combine long pulse, high power operation with severe restrictions on permitted core impurity concentrations and which, in addition, will produce transient energy loads on a scale unattainable in today’s devices. The current ITER PFC design has now reached a rather mature stage following the 2007 ITER Design Review. This paper presents the key elements of the design, reviews the physics drivers, essentially thermal load specifications, which have defined the concept and discusses a selection of material and design issues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call