Abstract

PurposeThis paper aims to present a process to generate physics-based trade-off curves (ToCs) to facilitate lean product development processes by enabling two key activities of set-based concurrent engineering (SBCE) process model that are comparing alternative design solutions and narrowing down the design set. The developed process of generating physics-based ToCs has been demonstrated via an industrial case study which is a research project.Design/methodology/approachThe adapted research approach for this paper consists of three phases: a review of the related literature, developing the process of generating physics-based ToCs in the concept of lean product development, implementing the developed process in an industrial case study for validation through the SBCE process model.FindingsFindings of this application showed that physics-based ToC is an effective tool to enable SBCE activities, as well as to save time and provide the required knowledge environment for the designers to support their decision-making.Practical implicationsAuthors expect that this paper will guide companies, which are implementing SBCE processes throughout their lean product development journey. Physics-based ToCs will facilitate accurate decision-making in comparing and narrowing down the design-set through the provision of the right knowledge environment.Originality/valueSBCE is a useful approach to develop a new product. It is essential to provide the right knowledge environment in a quick and visual manner which has been addressed by demonstrating physics knowledge in ToCs. Therefore, a systematic process has been developed and presented in this paper. The research found that physics-based ToCs could help to identify different physics characteristics of the product in the form of design parameters and visualise in a single graph for all stakeholders to understand without a need for an extensive engineering background and for designers to make a decision faster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.