Abstract
The spin-torque oscillator (STO) is a new compact device operating as a tunable RF oscillator in the tens of gigahertz range whose characteristics are determined by the applied current and magnetic field. In this paper, we present a physics-based empirical circuit-level model of an STO that is compatible with circuit-level simulators such as SPICE. The characteristics of an STO are modeled as physics-based analytic functions of the applied current and external magnetic field. The validity of our model was verified by the HSPICE simulation of a current mirror circuit that contains an STO element. The simulation results are in good agreement with the experimental data in the normal operation range. High-order nonlinear effects at large currents are not included in our model because there is no theoretical equation available yet that can precisely explain these effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.