Abstract
AbstractAn efficient method to solve electromagnetic scattering problems involving several metallic scatterers or bodies composed of dielectric and metallic regions is proposed. So far, the method of moments has successfully been applied to large arrays of identical scatterers when it was combined with preconditioned iterative algorithms to solve for the linear system of equations. Here, the method is generalized to geometries that are composed of several metallic elements of different shapes and sizes, and also to scatterers that are composed of metallic and dielectric regions. The method uses in its core an iterative algorithm, preferably the transpose‐free quasi‐minimum residual (TFQMR) algorithm, and a block diagonal Jacobi preconditioner. For best performance, the blocks for the preconditioner are chosen according to individual scatterers or groups of scatterers for the array case, and according to the electric and magnetic current basis functions for dielectric/metallic scatterers. The iterative procedure converges quickly for an optimally chosen preconditioner, and is robust even for a non‐optimal preconditioner. Reported run times are compared to run times of an efficiently programmed LU factorization, and are shown to be significantly lower. Copyright © 2002 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.