Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> A physics-based model for PiN power diodes is developed and implemented as a SPICE subcircuit. The model is based on a distributed equivalent circuit representation of the PiN base region, which is obtained by solving the ambipolar diffusion equation with the finite difference method. The model is validated against experimental characterization that is carried out on the commercial fast recovery power diodes. Comparisons between the results of the SPICE model with experimental and simulation results taken from the literature and from SILVACO mixed-mode simulations are also presented. Finally, the simulation of a realistic power circuit demonstrates the practical suitability of the proposed model for circuit design in terms of computational efficiency, convergence, and robustness. </para>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.