Abstract

This paper describes a novel physics-based path planning architecture for autonomous navigation of tracked vehicles in rough terrain conditions. Unlike conventional path planning applications for smooth and structured environments, factors such as slip, slope of the terrain, robot actuator limitations, and dynamics of robot terrain interactions must be considered for rough terrain applications. The proposed path planning method consists of a hybrid planner/simulator, which takes into account all of the above factors by simulating the closed loop motion of the robot with a low-level controller on a realistic terrain model inside a physics engine. Once a feasible path to the goal is obtained, the same low-level closed loop controller is then used to execute the proposed path on the actual robot. The proposed architecture uses the D* Lite algorithm working on a 2D grid representation of the terrain as the high-level planner, Bullet as the physics engine and a hybrid automaton as the low-level closed loop controller. The proposed method is validated both in simulation and through experiments. Inferences based on the results from simulations and experiments show that the proposed planner is more effective in providing an optimal feasible path as compared to existing methodologies, demonstrating clear advantages for rough, unstructured terrain planning. Based on the results, possible improvements to the method are proposed for future work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.