Abstract
The power capability of a lithium-ion battery signifies its capacity to continuously supply or absorb energy within a given time period. For an electrified vehicle, knowing this information is critical to determining control strategies such as acceleration, power split, and regenerative braking. Unfortunately, such an indicator cannot be directly measured and is usually challenging to be inferred for today's high-energy type of batteries with thicker electrodes. In this work, we propose a novel physics-based battery power capability estimation method to prevent the battery from moving into harmful situations during its operation for its health and safety. The method incorporates a high-fidelity electrochemical-thermal battery model, with which not only the external limitations on current, voltage, and power, but also the internal constraints on lithium plating and thermal runaway, can be readily taken into account. The online estimation of maximum power is accomplished by formulating and solving a constrained nonlinear optimization problem. Due to the relatively high system order, high model nonlinearity, and long prediction horizon, a scheme based on multistep nonlinear model predictive control is found to be computationally affordable and accurate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.