Abstract

This work presents a physics based circuit model for calculating the total energy dissipated into neutral species for nanosecond pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that the nanosecond pulsed DBD's which have been proposed for aerodynamic flow control can be approximated by two independent regions of homogeneous electric field. An equivalent circuit model is developed for both homogeneous regions based on a combination of a resistor, capacitors, and a zener diode. Instead of fitting the resistance to an experimental data set, a formula is established for approximating the resistance by modeling plasmas as a conductor with DC voltage applied to it. Various assumptions are then applied to the governing Boltzmann equation to approximate electrical conductivity values for weakly ionized plasmas. The developed model is then validated with experimental data of the total power dissipated by plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.