Abstract

We introduce a new approximation approach for landmark-based elastic image registration using Gaussian elastic body splines (GEBS). We formulate an extended energy functional related to the Navier equation under Gaussian forces which allows to individually weight the landmarks according to their localization uncertainties. These uncertainties are characterized either by scalar weights or by weight matrices representing isotropic or anisotropic errors. Since the approach is based on a physical deformation model, cross-effects in elastic deformations can be taken into account. Moreover, with Gaussian forces we have a free parameter to control the locality of the transformation for improved registration of local geometric image differences. We demonstrate the applicability of our scheme based on analytic experiments, 3D CT images from the Truth Cube experiment, as well as 2D MR images of the brain. From the experiments it turned out that the new approximating GEBS approach achieves more accurate registration results in comparison to previously proposed interpolating GEBS as well as interpolating and approximating TPS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.