Abstract

A new approach is proposed to predict the thermally-activated dissolution-diffusion wear of carbide tools. Departing from the iterative procedure used for such nonlinear processes, a direct response surface approach that correlates the cutting conditions and wear level to the interface temperature is presented. For prediction of wear evolution, a calibrated thermodynamic model that describes chemical interaction between the tool and workpiece materials is combined with the FE simulation of machining process, considering the pressure-dependent thermal constriction resistance phenomenon. The accuracy of predicting flank wear in turning C50 plain carbon steel ‒ where dissolution-diffusion wear mechanism prevails ‒ is validated experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.