Abstract

Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE). In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties. Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs. To address these limitations, we propose a versatile framework based on a constrained optimization problem formulation, where we use the augmented Lagrangian method (ALM) to constrain the solution of a PDE with its boundary conditions and any high-fidelity data that may be available. Our approach is adept at forward and inverse problems with multi-fidelity data fusion. We demonstrate the efficacy and versatility of our physics- and equality-constrained deep-learning framework by applying it to several forward and inverse problems involving multi-dimensional PDEs. Our framework achieves orders of magnitude improvements in accuracy levels in comparison with state-of-the-art physics-informed neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.