Abstract

Matter at extreme densities is predicted to have truly exotic properties, including hightemperature superconductivity, superfluidity, and Wigner crystallization to name a few. However, these extreme states of matter exist only in the deepest interiors of large planets, brown dwarfs, and low-mass stars, and there are no data to test these predictions. Integral to developing predictive models for the evolution of both terrestrial and gas giant planets is an understanding of the materials states that occur deep inside these massive objects. Since we are not able to drill into the deep interiors of planets such as Jupiter to explore these extreme material states of During the last year we initiated a world wide effort to explore such material states using the National Ignition Facility (NIF). This effort has mobilized a new effort in extreme condensed condensed matter science. Over the course of the year we developed several experimental designs showing how NIF might be used to accurately characterize states of matter predicted to exist at the center of both large terrestrial and gas planets. In particular, we identified ways to compress iron to TPa conditions while keeping it solid and hydrogen to near TPa conditions at < eV temperatures using a variety of novel compression techniques. Then several of these diagnostic and compression techniques have been tested on the Jupiter laser facility and the Omega laser facility leading to several publications. In addition, several conference sessions and meetings were held which generated significant enthusiasum in the community for this new field of science. Below we give a brief synopsis of some of the resultant publications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call