Abstract

The effect of hollow aluminosilicate microspheres on the Payne effect and on physicomechanical, thermal, fire-retardant, and heat-protecting properties of elastomer compounds based on ethylene–propylene–diene rubber was studied. Based on the results obtained, the mechanism of the interaction of the elastomer matrix with the microspheres was suggested. Enhancement of the filler–matrix and filler–filler interaction favors additional three-dimensional cross-linking, which influences the set of the physicomechanical and thermal properties, and manifestation of the reinforcing effect in a coke layer under the conditions of erosion removal and detachment of the material with a high-velocity gas flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.