Abstract

This study assesses the in vitro release of tenofovir (TFV)-loaded triphosphate (TPP) cross-linked chitosan nanoparticles (NPs) catalyzed by human prostatic acid phosphatase (hPAP) for 24h. The physico-chemical characterization of the NPs included particle mean diameter (PMD), zeta potential (ζ), percent drug encapsulation efficiency (% EE), Fourier transform infra-red (FTIR)spectroscopy, powder X-ray diffractometry analysis (PXRD), and drug release kinetics. The first-order rate constant (k) and activation energy (Ea) of the cross-link (TPP) are determined by the integrated rate law and Arrhenius's equations. The hPAP Michaelis-Menten constant (Km) is determined by theLineweaver-Burk's equation. The NP's safety profile is evaluated on vaginal epithelial cells (VK2/E6E7). The lyophilized drug-loaded NPs' PMD, ζ, and PDI are 149.97nm, 4.4mV, and 0.3, respectively. The % EE after lyophilization is 93.7 ± 4.4%. These NPs released drug at faster rate (63% of TFV within 6h) under the enzyme's influence. The similarity and difference factors of drug release profiles (absence vs presence of hPAP) are 56.5 and 40.3, respectively. The hPAP's Km value of 0.019mM suggests it has a good affinity for TPP at physiological pH ~ 7.4. The enhanced hydrolysis of TPP or degradation of chitosan NPs is fundamentally due to a decrease of TPP's activation energy by hPAP. In fact, the Ea value is 22.50 ± 3.06kJ/mol or 16.33 ± 0.62kJ/mol in the absence or presence of hPAP, respectively. The NPs are non-cytotoxic to the treated vaginal cell line. These hPAP-responsive NPs are promising topicalnanomicrobicides for HIV/AIDS prevention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.