Abstract

A series of CuO–ZnO/Al 2O 3 solids were prepared by wet impregnation using Al(OH) 3 solid and zinc and copper nitrate solutions. The amounts of copper and zinc oxides were varied between 10.3 and 16.0 wt% CuO and between 0.83 and 7.71 wt% ZnO. The prepared solids were subjected to thermal treatment at 400–1000°C. The solid–solid interactions between the different constituents of the prepared solids were studied using XRD analysis of different calcined solids. The surface characteristics of various calcined adsorbents were investigated using nitrogen adsorption at −196°C and their catalytic activities were determined using CO-oxidation by O 2 at temperatures ranged between 125°C and 200°C. The results showed that CuO interacts with Al 2O 3 to produce copper aluminate at ≥600°C and the completion of this reaction requires heating at 1000°C. ZnO hinders the formation of CuAl 2O 4 at 600°C while stimulates its production at 800°C. The treatment of CuO/Al 2O 3 solids with different amounts of ZnO increases their specific surface area and total pore volume and hinders their sintering (the activation energy of sintering increases from 30 to 58 kJ mol −1 in presence of 7.71 wt% ZnO). This treatment resulted in a progressive decrease in the catalytic activities of the investigated solids but increased their catalytic durability. Zinc and copper oxides present did not modify the mechanism of the catalyzed reaction but changed the concentration of catalytically active constituents (surface CuO crystallites) without changing their energetic nature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.