Abstract

HIV-1 transactivator of transcription protein is one of the most promising AIDS vaccine candidates and plays central roles in the virus life cycle and pathogenesis. Understanding structural properties of vaccine candidate antigens leads to rational design of vaccines which improves their presentation to immune system and facilitates their manufacturing and storage. This study aims to investigate structural properties and stability of one variant of HIV-1 Tat recombinant protein using different spectroscopic, electrophoretic, and microscopic methods. Therefore, after the gene transformation, protein expression was optimized in E. coli cells and the C-terminal His6-tagged protein was purified using Ni-NTA resin. The structural stability of the pure protein was then investigated under different conditions including pH, Zn2+ ions, thermal and chemical stress. Acidic and alkaline pHs affects spectroscopic properties of the vaccine in different ways. The structure unfolding experiment shows relatively poor stability of the zinc-free protein sample compared to the ion-containing one. According to the quenching experiment and also thermal stability study results, the protein has attained more structural compactness in the presence of Zn2+. Secondary structure of the protein is mainly disordered and didn't significantly affect under various conditions. Finally, different degrees of oligomerization and aggregation were found under physiological conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.