Abstract

In order to better utilize the citrus pectin (CP) resource, the crude citrus pectin (CCP), obtained from the citrus fruit canning processing waste water, was purified by cellulose DEAE-52 column, providing neutral polysaccharide CP0 and two acidic polysaccharides (CP1 and CP3). CP1 had the highest yield among the three fractions, being 44.29%. The chemical composition, structure and morphology of these pectin components were analyzed. Monosaccharide composition analysis revealed that arabinose was the most abundant composition in these pectin samples. CCP, CP1 and CP3 were mainly composed of rhamnogalacturonan-I (RG-I) regions. Compared with CP3, CCP and CP1 had longer side chains, which are mainly consisted of arabinose. FT-IR and NMR analysis indicated that α-type glycosidic bonds are the main linkage in the four pectin components. These CP samples were found to possess different conformation, but no triple-helical conformation was observed in all these CP fractions. Scanning electron microscopy revealed that CCP, CP1 and CP3 all had irregular sheet-like structures and partly porous structures. The four pectin components showed the characteristics of non-Newtonian fluids and possessed good viscoelasticity. Due to these properties, the pectin might have potential application in food industry as food thickening agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call