Abstract

The physicochemical stability of six phenobarbital modifications [forms A, B, C (monohydrate), D (dioxane solvate), E (hemihydrate), and F] at various levels of humidity and temperature were measured using X-ray diffractometry and differential scanning calorimetry. Form D was identified as a new crystalline form (dioxane solvate). Polymorphic transformations of the modifications were investigated by the Kissinger method under nonisothermal conditions. Change of polymorphic content of phenobarbital modifications under various humidity levels at 45 degrees C was evaluated by X-ray powder diffraction. The polymorphic stability under isothermal conditions was estimated kinetically, based upon the Jander equation. Forms A, B, and F were stable at 0 and 75% RH and 45 degrees C for 3 months. On the contrary, forms C, D, and E transformed during storage. The transformation rates of form D were larger than that of forms C and E.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.