Abstract

It is reported that broilers with 'wooden breast' have poor processing properties, such as low binding and water-holding capacities. However, the reason for the poor functional characteristics has not been clarified. In this study, myosin was extracted from a wooden breast. Its physicochemical properties were investigated to clarify the relationship between the structure and physicochemical properties of the heating gel of myosin obtained from the wooden breast. The turbidity of myosin solution extracted from wooden breast increased with increase in the heat treatment to a higher value than that from the normal breast meat myosin. The solubility of myosin collected from a wooden breast after heating decreased like normal breast muscle myosin. The surface hydrophobicity of myosin removed from wooden breast increased continually above 60 °C, unlike the change in surface hydrophobicity of normal breast myosin. The free thiol group of myosin extracted from the wooden breast was higher than normal breast myosin before and after heating. The apparent elasticity of heat-induced gels and chicken meat sausages was significantly lower in sausages and gel with wooden breast than normal ones (P < 0.05). The microstructure of the heated gel of normal myosin showed a fine network structure. In contrast, the heat-induced gel of wooden breast-extracted myosin showed a structure with loosely connected aggregates and many gaps. The coarseness of the internal gel structure of myosin extracted from wooden breast was shown to affect the apparent elasticity of the gel and sausages made from the chicken meat. © 2023 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.