Abstract
This study aimed to compare the physicochemical properties of MTA Angelus (MTA-A), MTA Repair HP (MTA-HP), and Biodentine (BD). Setting times (n = 7) were determined in accordance with ASTM C266-15. Solubility (n = 11), pH (n = 10), and calcium ion release (n = 10) were evaluated up to 28 days in accordance with ANSI/ADA specification no. 57. Radiopacity was assessed by ANSI/ADA (n = 10) and the tissue simulator method (n = 10). In both methods, the specimens were radiographed using an aluminum stepwedge and the digital radiographs were analyzed in Adobe Photoshop, determining the mean grayscale pixel values of the materials, of the 3-mm aluminum stepwedge, and of the dentin, the latter of which was analyzed on the tissue simulator. The data obtained from each test were statistically analyzed and compared (p < 0.05). MTA-A presented longer final setting time compared with the other materials. There were no significant differences in the mass values of materials during the experiment. All materials presented an alkaline pH. BD promoted greater calcium ion release in most of the experimental periods. All materials presented appropriate radiopacity. BD showed lower radiopacity than MTA-A in the tissue simulator method. All groups presented higher radiopacity in the tissue simulator when compared with the ANSI/ADA method. MTA-A, MTA-HP, and BD showed appropriate physicochemical properties and radiopacity, and were considered suitable to be used in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.