Abstract

Physicochemical properties [swelling power (SP), pasting behaviour and retrogradation] of five wild type (wt), five amylose free (amf), four high-amylose (ha) potato starches (ps) and one wt and amf cassava starch (cs) were investigated. While swelling of wtps occurred in two phases, amfps showed a very fast swelling and no gel of swollen granules was observed at higher temperatures (>90 °C). Haps underwent only restricted swelling. SP of cassava starches were lower than those of potato starches. Wtps leached mainly amylose (AM) during heating at low temperatures. Molecules of higher molecular weight (MW) leached out at higher temperatures. Longer amylopectin (AP) chains [degree of polymerisation (DP) > 18] inhibited swelling while short chains (DP < 14) favoured swelling. Starch pasting behaviour of 5.0 and 8.0% starch suspensions was studied using Rapid Visco Analyser (RVA). For 5.0% suspensions, increased levels of high-MW AP and decreased levels of AM molecules led to higher peak viscosity. Longer AP chains (DP > 18) depressed peak viscosity, while short chains (DP < 14) increased peak viscosity for both concentrations. At 8.0%, peak viscosity increased with starch granule size. After 1 day of storage of gelatinised starch suspensions, wtps and especially amfps showed only limited AP retrogradation. In contrast, the high enthalpies of retrograded AP (ΔH retro) and peak and conclusion temperatures of retrogradation (T p ,retro and T c ,retro) of haps suggested partial cocrystallisation between AM and AP. Chains with DP 18–25 seemed to be more liable to AP retrogradation. Wtcs and amfcs did not retrograde at room temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call