Abstract
We have developed oleic acid-based partially fluorinated gemini surfactants with carboxylic acid headgroups. The fluorocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via a -CH(2)CH(2)OCO- unit, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via -OCOCH(2)CH(2)- units. The aqueous solution properties of these surfactants were studied at pH 9 in the presence of 10 mmol dm–3 NaCl by means of static surface tension, pyrene fluorescence, and dynamic light scattering measurements. The resulting surface tension data demonstrate that the partially fluorinated gemini surfactants exhibit excellent surface activity in their dilute aqueous solutions. In addition, the surfactants are suggested to form micellar aggregates 2–4 nm in diameter. We also studied the aqueous temperature-concentration phase diagrams of the partially fluorinated gemini surfactants (disodium salts) on the basis of visual observations (through a crossed polarizer), polarized optical microscopy, and small angle X-ray scattering measurements. Several phase states including micellar solution phase, hexagonal phase, bicontinuous cubic phase, and lamellar phase were observed along with the coexistence of these phases in certain regions. Assemblies with lesser positive curvature tend to be formed with increasing surfactant concentration, increasing temperature, and increasing fluorocarbon chain length. A comparison of the phase diagrams of the partially fluorinated and hydrogenated surfactant systems suggests that close molecular packing is inhibited within the assemblies of the partially fluorinated surfactants because of the limited miscibility between the fluorocarbon and hydrocarbon units. To the best of our knowledge, this is the first systematic report focusing on the temperature-concentration phase diagrams of (partially) fluorinated gemini surfactants over a wide range of compositions and temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.