Abstract

Microplastics are emerging pollutants that can adsorb heavy metals and threaten human health through food chain. Recently, there has been increasing interest in understanding the adsorption behavior of heavy metals by microplastics in farmland soil. In particular, arsenic (As), as a carcinogen, has the potential to be adsorbed by soil microplastics. However, the mechanisms and controlling factors of As adsorption by microplastics in farmland soil under natural conditions are still unknown. Here, microplastics and As were respectively added to farmland soils with different physicochemical properties from twelve provinces of China for adsorption experiment. We performed surface analysis of microplastics, quantified As accumulation through quasi-first-order kinetic equation and developed regression models to screen the factors controlling As adsorption. The results showed that the adsorption of As by soil microplastics was a chemical process accompanied by the loss of electrons from oxygen-containing functional groups. Soil cation exchange capacity (CEC) was the main factor controlling the adsorption rate, while soil organic matter (SOM), total nitrogen (TN) and CEC mainly influenced the equilibrium adsorption capacity. This is the first report on microplastic-As adsorption in natural soil, which allows deeper insights into risk assessment, prediction and control of microplastic-As pollution in agricultural soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call