Abstract

Sous-vide is a cooking method used to improve the tenderness and juiciness of chicken breast. However, the comparative changes in meat quality attributes of sous-vide cooked chicken breast and thigh muscles are not fully understood. The objective of this study was to investigate the effects of sous-vide cooking conditions, based on collagen denaturation temperature of intramuscular connective tissue, on the physicochemical properties of chicken breasts and thighs. Chicken breast and thigh were cooked at four sous-vide cooking conditions (55 °C for 3/6 h and 65 °C for 3/6 h) and conventional cooking at 75 °C (core temperature of 71 °C) as control. No significant differences in pH and lightness were found between the sous-vide cooking conditions. Moisture content, cooking loss, protein solubility, shear force, myofibrillar fragmentation index, and lipid oxidation were affected by sous-vide cooking conditions (p < 0.05). The decreased shear force and total collagen content of 65 °C sous-vide cooking treatment might be associated with collagen denaturation (p < 0.05). Sous-vide cooking at 55 °C could decrease cooking loss, with higher moisture than sous-vide cooking at 65 °C (p < 0.05). These tendencies on water-holding capacity and shear force at the two different temperatures were similarly observed for both chicken breast and thigh. Therefore, this study indicates that chicken breast and thigh are similarly affected by the sous-vide cooking conditions and suggests that a novel strategy to apply together two temperature ranges based on the thermal denaturation of intramuscular connective tissue would be required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.