Abstract

The utilisation of cotton waste as precursors in the synthesis of nanocrystalline cellulose has gained significant attention. This approach suggests a sustainable solution to address the growing concern of textile waste accumulation while simultaneously producing a valuable material. The main aim of this study is to examine the properties of cellulose nanocrystals (CNCs) obtained from postconsumer polyester-cotton waste and assess the effect of different fabric structures on the extraction and these properties. To acquire nanocellulose, a thorough decolourisation pretreatment process was utilised, which involved the treatment of polyester-cotton waste with sodium dithionite and hydrogen peroxide. Consequently, the postconsumer material was then treated with an acid hydrolysis method employing a 64% (v/v) sulphuric acid solution at 50 °C for 75 min, resulting in the formation of CNCs with average yield percentages ranging from 38.1% to 69.9%. Separation of the acid from the CNC was facilitated by a centrifugation process followed by dialysis against deionised water. Uniform dispersion was then achieved using ultrasonication. A variety of analytical techniques were employed to investigate the morphological, chemical, thermal, and physical properties of the isolated CNCs. Among these techniques, attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR), energy-filtered transmission electron microscopy (EF-TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) were utilised to analyse the CNCs. The findings indicated that the separated CNCs exhibited a rod-shaped morphology, measuring between 78 and 358 nm in length and 5 and 16 nm in diameter, and also exhibited high crystallinity (75-89%) and good thermal stability. The extracted CNCs were mixed with polyvinyl alcohol (PVA) and glycerol to assess their reinforcing effect on plastic films. The prepared composite film exhibited improved mechanical properties and thermal stability. Incorporating CNCs led to a 31.9% increase in the tensile strength and a 42.33% rise in the modulus of elasticity. The results from this research proved that CNCs can be extracted from postconsumer mixed fabrics as a potential solution to effectively address the mounting concerns surrounding waste management in the textile industry and also provide avenues for enhancing the qualities of eco-friendly composite films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call