Abstract

To look for the collagen alternatives of mammalian cartilages from aquatics and their by-products, acid-soluble collagen (ASC-SC) and pepsin-soluble collagen (PSC-SC) were extracted from cartilages of Siberian sturgeon (Acipenser baerii) with yields of 27.13 ± 1.15 and 14.69 ± 0.85% on dry weight basis. ASC-SC and PSC-SC had glycine as the major amino acid with the contents of 326.8 and 327.5 residues1000 residues-1, and their contents of proline and hydroxyproline were 205.9 and 208.0 residues1000 residues-1. ASC-SC and PSC-SC comprised type I collagen ([α1(I)]2α2(I)) and type II collagen ([α1(II)]3) on the literatures and results of amino acid composition, SDS-PAGE pattern, UV, and FTIR spectra. Meanwhile, FTIR spectra data indicated that there were more hydrogen bonds in ASC-SC and more intermolecular crosslinks in PSC-SC. The maximum transition temperature (Tmax) of the ASC (28.3°C) and PSC (30.5°C) was lower than those of collagens from mammalian cartilages (> 37°C). ASC-SC and PSC-SC showed high solubility in the acidic pH ranges and the solubility decreased in the presence of NaCl at concentrations above 3%. Zeta potential studies indicated that both ASC-SC and PSC-SC exhibited a net zero charge at pH6.30 and 6.32. SEM results indicated that ASC-SC and PSC-SC presented irregular dense sheet-like film linked by random-coiled filaments. Therefore, collagens from Siberian sturgeon cartilages might be the suitable alternatives of the collagens of mammal cartilages as functional ingredient to treat some diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call