Abstract

(1) Background: Polysaccharide films are promising vehicles for the delivery of bioactive agents such as collagenases, as they provide controlled release at the wound site, facilitating tissue regeneration. This study aimed to investigate the physicochemical properties of Cassia grandis polysaccharide films with immobilized collagenase from Streptomyces parvulus (DPUA/1573). (2) Methods: Galactomannan was extracted from Cassia grandis seeds for film production with 0.8% (w/v) galactomannan and 0.2% (v/v) glycerol with or without collagenases. The films underwent physical-chemical analyses: Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), color and opacity (luminosity-L*, green to red-a*, yellow to blue-b*, opacity-Y%), moisture content, water vapor permeability (WVP), thickness, contact angle, and mechanical properties. (3) Results: The results showed similar FTIR spectra to the literature, indicating carbonyl functional groups. Immobilizing bioactive compounds increased surface roughness observed in SEM. TGA indicated a better viability for films with immobilized S. parvulus enzymes. Both collagenase-containing and control films exhibited a bright-yellowish color with slight opacity (Y%). Mechanical tests revealed decreased rigidity in PCF (−25%) and SCF (−41%) and increased deformability in films with the immobilized bioactive compounds, PCF (234%) and SCF (295%). (4) Conclusions: Polysaccharide-based films are promising biomaterials for controlled composition, biocompatibility, biodegradability, and wound healing, with a potential in pharmacological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.