Abstract

Neutralization of an organic super-strong base, 1,8-diazabicyclo-[5,4,0]-undec-7-ene (DBU), with different Brønsted acids affords a novel series of protic ionic liquids (PILs) with wide variations in the ΔpK(a) of the constituent amine and acids. The physicochemical properties of these PILs, such as thermal properties, density, conductivity, viscosity, self-diffusion coefficient, vibrational stretching frequency, and (1)H-chemical shifts of the N-H bond, have been studied in detail. The generated PILs have melting temperatures below 100 °C, and six are liquids at ambient temperatures. Thermogravimetric analyses (TGA) conducted under isothermal and programmed heating conditions have shown that PILs with ΔpK(a)≥ 15 exhibit good thermal stability similar to aprotic ionic liquids. For instance, PILs with ΔpK(a) > 20 show remarkably high short-term thermal stability up to ca. 450 °C under a nitrogen atmosphere. The viscosity, ionic conductivity, and molar conductivity of the PILs fit well with the Vogel-Fulcher-Tamman equation for their dependencies on temperature. The relative cationic and anionic self-diffusion coefficients of the PILs estimated by the pulsed-field gradient spin-echo (PGSE) NMR method appear to be dependent on the structure and strength of the Brønsted acids. Evaluation of the ionicity based on both the Walden plot and PGSE-NMR revealed that it increases until ΔpK(a) becomes 15 for the PILs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.