Abstract

The influence of regime (temperature, composition of gas mixture and its pressure) and energy characteristics (voltage, current density, specific discharge power) at hydrogen-free-nitriding in a glow discharge (HFNGD) on the structure, phase composition of nitrided layers is investigated. It is shown that due to the combination of regime and energy parameters of HFNGD it is possible to achieve physical and chemical indicators of nitrided layers set by operating conditions. The set of traditionally fixed values of regime parameters (temperature, gas mixture connection, pressure and saturation time) without taking into account energy characteristics (voltage, current density and specific discharge power) significantly reduces the technological capabilities of HFNGD. With controlled regulation of the energy characteristics of HFNGD, a significant reduction in the energy consumption of the nitriding process is achieved. It is established that the energy levels of the main subprocesses differ significantly: the formation of nitrides occurs at low energies, surface sputtering is realized at high voltage values, and nitrogen diffusion occurs at high current densities. In cases where the flow energy is insufficient, either a glow discharge may not occur at all, or at insufficient stress the nitride layer on the surface is not sprayed and it acts as a barrier that prevents the diffusion process into the inner layers of the metal, leading to low physicochemical indicators of nitrided layers. The priority in the formation of one or another phase (, , u, ), the quantitative ratio between them and the required performance properties of the metal, respectively, can be achieved only through an independent combination of energy and regime characteristics of HFNGD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.