Abstract

The study emphasizes on the scalable production and comparison of few layered graphene nanosheets (FLGNSs). The FLGNSs have been electrochemically synthesized by anionic intercalation from three different acids of 1 M of H2SO4 (S1), 1-M HClO4 (C1), and 1-M HNO3 (N1). The size distribution and stability of the as-prepared FLGNSs colloidal have been analyzed thoroughly. A yield of around 50 % was found irrespective of experimental condition. A mixed phase of graphene and its oxide form has been confirmed X-ray diffraction patterns. C1- and N1-conditioned FLGNSs had higher oxygenation as compared to S1, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The disorderness in the FLGNSs has been analyzed by Raman spectra. The aromaticity, surface hydroxylation, and oxygenation of the as-synthesized FLGNSs due to electrochemical reactions have been confirmed by Fourier transform infrared spectroscopy. The UV-visible spectra of FLGNSs colloidal show the electronic transition of π-π* as well as n-π*. From morphological studies, the layered and crumpled edges of the exfoliated FLGNSs have been revealed. Again, from the probe conductivity analysis, the measured conductivity of the dispersed sulfate-, perchlorate-, and nitrate-intercalated FLGNSs has been found with a decreasing trend from 1.652, 0.315, to 0.300 mS/cm for S1, C1, and N1 conditions, respectively, due to increasing of oxygen endowment in the graphene sheets. Detailed supercapacitor investigations demonstrated that the S1-conditioned FLGNSs show enhanced supercapacitor performance than C1 and N1. It possesses a maximum energy density of 20 Wh kg−1 and a maximum power density of 2.5 kW kg−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call