Abstract

The sufficient review of the existing literature of the 1-alkyl-1-methylppiperidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-butyl-1-methylpiperidinium thiocyanate [BMPIP][SCN] + an alcohol (1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-dodecanol), or + water, or + aliphatic hydrocarbons ( n-hexane, n-heptane, n-octane), or + cyclohexane, or, + cycloheptane, or + aromatic hydrocarbons (benzene, toluene, ethylbenzene)} and for the binary systems of {1-ethyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [EMPIP][NTf 2] + an alcohol (ethanol, 1-propanol, 1-butanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol), or + water} have been determined at atmospheric pressure using a dynamic method. The influence of an alcohol chain length was discussed for these ionic liquids. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid) phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and the alcohols for the thiocyanate-based ionic liquid. Opposite, the bis{(trifluoromethyl)sulfonyl}imide-based ionic liquid reveal the immiscibility gap in the liquid phase. The correlation of the experimental data has been carried out using the NRTL equation. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpiperidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e. melting temperature and the enthalpy of fusion, the solid–solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.