Abstract
Hsian-tsao polysaccharides fractions (HPs), including HP20, HP40, HP60, and HP80, were fractioned by gradient precipitation of 20 %, 40 %, 60 %, and 80 % (v/v) ethanol, respectively. Their physicochemical properties and in vitro hypoglycemic activities (inhibitory activities on α-amylase and α-glucosidase, glucose adsorption capacity, and glucose diffusion retardation) were determined. The results showed that, with ethanol upward, the average particle size, molecular weight, and apparent viscosity of HPs were decreased while carbohydrate and uronic acid contents, absolute zeta potential, and thermal stability were increased. Each of the HPs contained Rha, Ara, Gal, Xyl, Man, and GalA with different molar ratios, indicative of anionic heteropolysaccharides with uronic acid. HPs, with diverse structures and surface morphologies as proved by FTIR and SEM, whose solutions were pseudoplastic fluids, exhibited elastic behavior of weak gel networks at concentrations of >1 %. Moreover, HPs showed inhibitory activities on α-amylase and α-glucosidase, of which HP80 was the strongest. For α-amylase, HP20 and HP60 behaved as mixed inhibitors, while HP40 and HP80 were non-competitive. For α-glucosidase, HPs acted as mixed inhibitors. Additionally, HPs possessed glucose adsorption capacity and glucose diffusion retardation, with the best for HP20. These results suggested that HPs possessed hypoglycemic activities, which could be developed as functional food or hypoglycemic drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.