Abstract

To evaluate invitro the physicochemical properties, cytotoxicity and calcium phosphate nucleation of an experimental light-curable pulp capping material composed of a resin with antibacterial monomer (MAE-DB) and Portland cement (PC). The experimental material was prepared by mixing PC with a resin containing MAE-DB at a 2:1 ratio. Cured pure resin containing MAE-DB served as control resin. ProRoot MTA and Dycal served as commercial controls. The depth of cure, degree of monomer conversion, water absorption and solubility of dry samples, calcium release, alkalinizing activity, calcium phosphate nucleation and the cytotoxicity of materials were evaluated. Statistical analysis was carried out using anova followed by Tukey's HSD test (equal variance assumed) or Tamhane test (equal variance not assumed) and independent-samples t-tests. The experimental material had a cure depth of 1.19mm, and the mean degree of monomer conversion was 70.93% immediately post-cure and 88.75% at 24h post-cure. The water absorption of the experimental material was between those of MTA and Dycal, and its solubility was significantly less (P<0.05) than that of Dycal and higher than that of MTA. The experimental material exhibited continuous calcium release and an alkalinizing power between those of MTA and Dycal throughout the test period. Freshly set experimental material, control resin and all 24-h set materials had acceptable cytotoxicity. The experimental material, MTA and Dycal all exhibited the formation of apatite precipitates after immersion in phosphate-buffered saline. The experimental material possessed adequate physicochemical properties, low cytotoxicity and good calcium phosphate nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call