Abstract

The present work was carried out to evaluate physicochemical (composition, hunter color, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]), pasting, and functional properties (foaming, emulsification, water, and fat absorption capacity) of amaranth full-fat flours from 6 lines/cultivars (AFs), and to see the effects of lipid removal/defatting on these properties. Protein, ash, and lipid content of AFs ranged between 12.5% to 15.2%, 3.0% to 3.5%, and 7.1% to 8.0%, respectively. The flours showed a number of bands between 97 and 7 kDa, with main subunits of approximately 58, 37, 33, 31, 23, and 16 kDa in the SDS-PAGE profiles. The protein content and L* value increased, while b* values decreased following defatting for most of the lines/cultivars. The defatted flours (DAFs) had higher final viscosity and stability (lower breakdown viscosity) as compared to counterpart AFs. The protein profiling of the flours was not affected with the lipid removal/defatting. However, water absorption capacity and foam stability of the flours improved upon defatting. Principal component analysis revealed that pasting temperature was positively related to lipid content, while breakdown viscosity was negatively related to protein content. Foaming properties (capacity and stability) showed negative relationship with lipid content, and positive with protein content, ash content, water, and fat absorption capacity. Amaranth grains are known to have higher amount of proteins and lipids than cereals. Amaranth lipids are rich in unsaturated fatty acids, which are prone to oxidative rancidity. Removal of lipids or defatting of flours may be carried out to enhance product shelf life by preventing undesirable oxidative chain reactions. Therefore, this research was undertaken to see the effects of defatting on the functional properties of amaranth flours. The defatting was a value addition process as it improved the functional properties of the flours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.