Abstract

The oxygen and carbon isotopic compositions of minerals from banded iron formations (BIFs) and high-grade ore in the region of the Kursk Magnetic Anomaly (KMA) were determined in order to estimate the temperature of regional metamorphism and the nature of rock-and ore-forming solutions. Magnetite and hematite of primary sedimentary or diagenetic origin have δ18O within the range from +2 to 6‰. During metamorphism, primary iron oxides, silicates, and carbonates were involved in thermal dissociation and other reactions to form magnetite with δ18O = +6 to +11‰. As follows from a low δ18Oav = −3.5‰ of mushketovite (magnetite pseudomorphs after hematite) in high-grade ore, this mineral was formed as a product of hematite reduction by organic matter. The comparison of δ18O of iron oxides, siderite, and quartz from BIFs formed at different stages of the evolution of the Kursk protogeosyncline revealed specific sedimentation (diagenesis) conditions and metamorphism of the BIFs belonging to the Kursk and Oskol groups. BIF of the Oskol Group is distinguished by a high δ18O of magnetite compared to other Proterozoic BIFs. Martite ore differs from host BIF by a low δ18O = −0.2 to −5.9‰. This implies that oxygen from infiltration water was incorporated into the magnetite lattice during the martite formation. Surface water penetrated to a significant depth through tectonic faults and fractures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.