Abstract

Land-based sources of groundwater pollution can be a critical threat to coral reefs, and a better understanding of “ridge-to-reef” water movement is required to advance management and coral survival in the Anthropocene. In this study a more complete understanding of the geological, atmospheric, and oceanic drivers behind coastal groundwater exchange on the Kalaupapa peninsula, on Moloka‘i, Hawai‘i, is obtained by analyzing high resolution geochemical and geophysical time-series data. In concert with multiyear water level analyses, a tidally and precipitation-driven groundwater connection between Kauhakō Crater lake and submarine groundwater discharge (SGD) fluxes are demonstrated. Results include an average discharge rate of 190 cm d−1 and the detection of water-flow pathways past cesspools that likely contribute to higher nutrient loading near the SGD sites. This underlines the importance of managing anthropogenic nutrients that enter the shallow freshwater lens such as through cesspools and are consequently discharged via SGD onto coral reef habitats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.