Abstract

This research was intended to synthesize liposome as a nanocarrier to encapsulate quercetin, which is prone to degradation and susceptible to low bioavailability upon oral administration. The liposomes were synthesized by thin-film hydration method and followed by probe sonication for downsizing. Soy phosphatidylcholine (SPC) and cholesterol (CHOL) were employed as the composition of the phospholipid bilayer. Results indicated a dependence of sonication amplitude and time in the formation of free liposomes (FL). The average size of quercetin-loaded liposomes (QL) prepared was 346.4 nm with a narrow polydispersity index (0.22) and a high magnitude of zeta potential (-49.6 mV). These characterizations depict that a homogenous nanovesicle suspension with high stability was successfully synthesized. Quercetin was incorporated into the liposomes with a high encapsulation efficiency of 90.7% and loading capacity of 9.3%. This viable nanocarrier perhaps will provide ingenious protection for a wider spectrum of active agents in food and biopharmaceutical products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.