Abstract

AbstractWe prepared porous silicon (PSi) structures by standard electrochemical processes using aqueous sodium fluoride (NaF) solutions. We report the dependence of the porous structure on the variation of pH and salt concentration of the etching solution, and the applied current density. The PSi structures were characterized by Scanning Electron Microscopy (SEM) and Secondary Ion Mass Spectroscopy (SIMS) to determine the pore size and distribution and the surface chemical composition. Results obtained from SEM show that the PSi grown has two different structures depending on the current density. Low current densities produce a uniform, high-density arrangement of pores while high current densities yield a sponge-like structural network. SIMS results indicate that the porous framework is covered with a silicon oxide layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call