Abstract

Oral disintegrating films (ODFs) offer a patient-friendly approach with enhanced convenience and rapid onset of action over various health benefits. ODFs are fabricated for geriatric, pediatric, and individuals facing swallowing challenges. The present work aims to fabricate and characterize ODFs mainly composed of okra mucilage (OM), hyaluronic acid (HA), vitamin-C-loaded bioactive glass nanoparticles (VBG NPs), and clove essential oil. A bio-inspired method was employed to synthesize VBG NPs using fructose template. The nutrient analysis of OM depicted that it is a rich source of protein, carbohydrates, magnesium, and flavonoids (quercetin), accounting for its antioxidant activity. The physicochemical characteristics of the ODFs studied using contact angle measurement, surface pH, opacity, and in vitro disintegration time revealed that ODFs disintegrated rapidly in simulated saliva. The neutral surface pH of ODFs indicates their non-irritant behaviour to the oral mucosa. VBG NPs and essential oil (EO) addition enhance the thermal and mechanical properties. Further, EO infusion in the film matrix resulted in the porous and antibacterial nature of the functional film as revealed by FE-SEM micrographs and antibacterial disk diffusion assay respectively. The obtained novel nutrient-rich ODF is hemocompatible with a hemolysis rate (HR%) <5 % and suitable for functional food applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.