Abstract

Alogliptin (ALG) is a hypoglycemic drug used in diabetes which inhibits the enzyme dipeptidyl peptidase-4 (DPP-4), preventing the degradation of incretins, stimulating insulin secretion. The physicochemical characteristics of ALG were evaluated by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy equipped with energy-dispersive X-ray spectrometer (SEM/EDS). The compatibility studies were carried out between ALG and excipients (physical mixtures, 1:1) using DSC, TG, diffuse reflectance Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD) and hot-stage microscopy. ALG presented purity near to 99%, melted in the range of 179.4–187.2 °C, followed by decomposition which started in 198.0 °C. SEM/EMS analysis of ALG presented irregular crystals and traces of impurities as copper and lead. DSC investigations obtained by physical mixtures showed minor alterations in the melting ranges of ALG with mannitol, magnesium stearate and commercial tablets. Solubilization of ALG in the fused excipient was observed by hot-stage microscopy between mannitol and ALG, and in tablets. The interaction observed in the mixture with magnesium stearate is due to the melting of the excipient and drug separately, first the excipient and then the drug. FTIR showed additional bands related to the excipients. XRPD proved that ALG has a crystal form and no alterations in the ALG profile were observed after the mixtures. ALG was compatible with all excipients tested. These results were important to understand the characteristics, stability and compatibility of the drug, and proved to be useful in preformulation studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call