Abstract

Osseointegration process may be defined as the structural and functional connection between living bone and the surface of an implant, promoting adequate cell adhesion, proliferation, and differentiation. One strategy to increase the biocompatibility and consequently generate greater osteogenesis is to modify the surfaces of implants to alter the process of the bone tissue repair. Surface modifications in titanium implants were proposed using organic bifunctional spacers (3-mercaptopropionic acid, MPA, and 3-aminopropyltrimethoxysilane, APTMS) or direct albumin (BSA) immobilization. Chemical immobilization of BSA, either physically or covalently, on TiO2 substrates showed similar surface chemistry without altering long-term cellular interaction. Furthermore, TiO2-APTMS substrate with -NH2 groups on the surface more efficiently interacts with components of the extracellular matrix, presenting high cell viability at 48 h and better viability and mineralization results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.